Segment No. 16-34-02 WA-34-1020 PULLMAN SEWAGE TREATMENT PLANT CLASS II INSPECTION; SEPTEMBER 16-17, 1986 by Marc Heffner Water Quality Investigations Section Washington State Department of Ecology Olympia, Washington 98504-6811 #### ABSTRACT A Class II inspection was conducted at the Pullman Sewage Treatment Plant (STP) on September 16 and 17, 1986. The facility, a bio-tower/activated sludge secondary plant discharging into the South Fork of the Palouse River, was providing good biochemical oxygen demand (BOD₅) and total suspended solids (TSS) removal. Reduced effluent ammonia and chlorine residual concentrations were observed in comparison to a pre-upgrade survey conducted in 1978. All parameters were below or within National Pollutant Discharge Elimination System (NPDES) permit limits, with the exception of the effluent ammonia concentration which exceeded the allowed monthly average. Collection of limited receiving water data by STP personnel is suggested to help evaluate the ammonia permit limits. #### INTRODUCTION A Class II inspection was conducted on September 16 and 17, 1986, at the Pullman Sewage Treatment Plant (STP). The inspection was a follow-up to a pre-upgrade Class II inspection/receiving water survey done by the Water Quality Investigations Section (WQIS) on September 12 and 13, 1978 (Bernhardt and Yake, 1979). Conducting the inspection were Carl Nuechterlein from the Ecology Eastern Regional Office (ERO) and Marc Heffner from the Ecology WQIS. Terry Dokken, chief operator at the STP, and Al Prouty, plant process analyst, provided assistance. The inspection was conducted in conjunction with an Ecology receiving water study on the South Fork of the Palouse River. The receiving water results are presented in a separate report (Joy, in preparation). The Pullman STP is a secondary plant that provides seasonal nitrification. Treatment units include two primary clarifiers, a bio-tower, two activated sludge basins, two secondary clarifiers, and chlorination/dechlorination facilities (Figure 1). Treated effluent is discharged into the South Fork Palouse River, as limited by NPDES permit #WA-004465-2. Sludge from the process is thickened, anaerobically digested, dried using a belt filter press, then spread on agricultural land. A paved lagoon is used for sludge storage when field conditions do not allow spreading. #### Objectives included: - 1. Collect samples and measure flow to estimate plant efficiency and NPDES permit compliance. - 2. Review laboratory procedures (including sample splits with the STP laboratory) to estimate accuracy of results and conformance with approved analytical techniques. - 3. Provide data for consideration as part of the receiving water study. FIGURE 1 - FLOW SCHEME - PULLMAN, 9/86. #### **PROCEDURES** Grab and composite samples were collected during the inspection. Ecology composite samplers collected influent and effluent samples (Figure 1). The samplers collected approximately 220 mLs of sample every 30 minutes for 24 hours. Composite samples collected by the Pullman STP included a flow-paced influent sample and a time-paced effluent sample. The effluent sampler collected approximately 150 mLs of sample every 45 minutes. The Pullman influent sampler plugged during the sampling period, resulting in an incomplete sample. All composite samples were split for analysis of selected parameters by the Ecology and Pullman STP laboratories. Sampling times and parameters analyzed are included on Table 1. Ecology grab samples were collected for field and laboratory analyses (Figure 1). Samples collected and parameters analyzed are summarized on Table 1. Instantaneous Ecology flow measurements were made at the influent Parshall flume. The operator reported that the in-line effluent flow meter is not accurate at the usual plant flow rate, so it was not being used during the inspection. #### RESULTS AND DISCUSSION Data collected during the inspection are summarized in Table 2 (Ecology Analytical Results) and Table 3 (Flow Measurements). | Table 3 - Flow measurements - Pullma | 10 | TAC | mescurements | - | P11]] | man. | Q. | /86. | |--------------------------------------|----|-----|--------------|---|---------|------|----|------| |--------------------------------------|----|-----|--------------|---|---------|------|----|------| | Dat | е | - | Instantan- | Total- | Flow for time increment | |-------|-----|-------------|------------|------------|-------------------------| | Month | Day | Time | (MGD) | reading | (MGD) | | 9 | 16 | 1150 | - | 29929
* | 2.15 | | 9 | 16 | 1510 | 2.80+ | 2408 | | | 9 | 17 | 0820 | 5.78 | 21770 | 2.71
4.82 | | 9 | 17 | 1050 | 3.90 | 26786 | 4.02 | | | ΑV | rerage flow | during ins | pection = | 2.85 | ^{*}totalizer reset to zero at approximately 1200 hours each day. Meter was reset from approximately 30500 on 9/16. ⁺Ecology instantaneous measurement 2.9 MGD (assumes standard 18" Parshall flume) Table 1 - Sampling schedule and parameters analyzed - Pullman, 9/86. | | | | | | 1 | 1eld | Ana | Field Analyses | | U | | | | | | | | | | | 1 | Lab | orai | Laboratory | 1 | Analyses | u | Ì | |----------------------|------|-----------------|----------|-------------------------------|---------------|----------|---------|----------------|----------|---------|---------|--------|------------------|----|----|--------|--------------|---------|------|------|------------------|-----------------------------|------|------------|---------|----------|------------------|------| | | | | | | | | | | | | ш | | | | | | | | | - | | | | | 1 | 7 | | | | | | | | şş Á | ı.e | | | Ch1. | | | | | | | | | | | | | | | | £Ž. | | | sts | | | u | | | ال ي: | Loc | nge | | | Resid. | ا:_ | | | | | | | Solids | lde | Δ1
1 | | Nut | Nutrients | SIC | ı | lvì | Ka p | Э | 7-91 | | | Statio | эзед | 9miT | safgas S | Laborai | Тетрота
Те | Hq | Conduct | erec | Istol | vlossi(|) [soe: | ureroc | [⊊] aos | CD | S. | SAN | SSAN.
US. | lbidau | N-EH | N-20 | π-ε ₀ | d=.
d= [†] 0d=: | H: | າວກອນປ | nitsali | praotá | - ogbul
- ofo | olor | | | | | | | 1 | | 1 | | | ì | | 1 | 1 | | | | 1 | 1 | | 1 | | 1 | i | | v | Э | 1 | .\ | | Influent | 9/16 | 1030 | | | | × × | ×× | | | | | × | | × | | ~ | × | | | | | | | | | | × | | | | 9/17 | 0850 | | | < × | ‡ x | < × | | | | | × | Comp.
(1000- | Ecology | Ecology
Pullman | × | | × | | | | | | ×× | × | × | × | × × | × | ×× | × | × | × | × | × | × | × | | | | | | 1000) | Pullman | Ecology
Pullman | | | | | | | | | ×× | | | ~~ | ×× | | ×× | | | × | × | × | × | | | | | Aeration
Basin #1 | 9/16 | 1050
0850 | | | × | | | | | ×× | | | | | | ×× | ×× | | | | | | | | | | | | | Aeration
Basin #2 | 9/16 | 1055 | | | × | | | | | × × | | | | | | × > | × > | | | | | | | | | | | | | 17 6 6 1 21 2 22 4 | 71/0 | 1130 | | | | <u>.</u> | : | | | | | | | ; | | • | | | | | | | | | | | | | | E1110e111 | 9/10 | 1216 | | | × | × | χ. | | ; | • | × | × | | × | | × | | × | × | × | × | × | × | × | × | × | | | | | | 1340 | | | | | · • • | * * X | × * × | 1535 | | | × | × | × | | | | × | × | | × | | × | | × | × | | | | × | × | × | × | | | | | 9/17 | 0840 | | | | ‡* | | * * X | * * * * | ., | × | | | × | | × | | × | × | × | X | × | × | × | × | × | | | | | | 1045 | | | | | • | | ۲×+
۲ | | × | Comp. | Ecology | Ecology | × | | × | | | | | | * × | × | × | × | × | ×× | × | × | × | × | × | × | × | × | | | | | | 1000) | Pullman | Ecology | | | | | | | | | < × | × | × | ×× | × | ×× | × | × | × | × | × | × | × | × | | | | | 9/18 | 0800 | | Pullman
Ecology
Pullman | | | | | **X | | | | × | | | ~ | | | × | | | | | | | | | | | Dried | 9/17 | 0830 | Ŷ | × | | | Digester
Sludge | - | | | - | - | - | - | - | - | - | - | - | | | - | | *grab samples are sampled and analyzed by Ecology unless otherwise specified **before dechlorination *+after dechlorination +1nhibited BOB also run +TpH meter malfunctioned Table 2 - Ecology analytical results - Pullman, 9/86. | | - | | | | | A | Tield Anelinees | · lusas | | | - | | | 1 | | | | | | | - | - | | | | - | | | |----------------------|--------------|----------------------|-----------------------------|------------|------------|---------------------------|-----------------------|-------------|--------------------------|---------------------------|---------------------------|-------------------------|-------------------------|------------|----------------------|--------------|---------|---|-------|--------------------|----------------|----------------------|---------|-----------|---------------------------|----------------------------------|--------------------------|-------------| | | | | | - | | - | | | | | - | | - | 13 | Labouratory Analyses | 7 | Begins | | | | | | | | | | | | | | | | | | | K | 1 | 10181 | Γ) | | s | Э | | | Ň | Solids (mg/L | (mg/L) | 1 | - | Mutt. | Nutrients (mg/ | mg/L) | | | Á | | (_ | (s | | noitst | Date | Тіте | 191qme2 | Temp. (OC) | (.U.2) Hq | Conductivit
(mp\eodmu) | Chl. Resid.
(J\gm) | Chl. Resid. | Dissolved
Oxygen (mg/ | Fecal Coli.
(#/100 mL) | Enterococcu
(#/100 mL) | lio لا Greas
(عولا/ل | 80D ₅ (mg/L) | COD (#8/r) | S1 | SAKL | LZS | TMVSS (HTU) | N-EHN | n- ^z on | N-E ON | 4- ⁹ 04-0 | q-lajoT | (.U.2) Hq | Conductivit
(ms\sodmu) | Alkalinity
(mg/L as
CaCO3) | Cinloride
(mg/L as Cl | Color (unit | | Influent | 91/6 | 1030 | | 22.5 | 7.3 | 909 | | | | | | 62 | 4 | 400 | | 4 | 400 | | | | | | | | | | | 1800 | | | 9/17 | | | 23.7 | <u>;</u> ‡ | | | | | | | ń | Comp. | Comp. Ecology
Pullman+++ | 7 | | 700 | | | | | | ., | 180 4
250 | 007 | 620 3 | 330 1. | 130 20 | 0 32 | 2 19 | 0.01 | 0.07 | 3.1 | 3.0 | 7.9
| 740 | 270 | 7.4 | | | Aeration
Basin #1 | 9/16 | 1050
0850 | | 22.2 | | | | | 3.0-4.0 | | | | | | | | 1400 27 | 270 | | | | | | | | | | | | Aeration
Basin #2 | 9/16
9/17 | 1055
0850 | | 22.1 | | | | | 3.0-4.0 | | | | | | | , | 1500 26 | 260
250 | | | | | | | | | | | | Effluent 9/16 | 9/16 | 1130
1315
1340 | | 21.5 | 21.5 7.0 | 575 | <0.1* | 0.1* | | 160 | 2100 | - | Ŋ | 53 | | 2 | 20 | 4 | 1.7 | 1.3 | 23 | 5.6 | 6.5 | 7.2 | 632 | 120 | 77 | | | | 9/17 | 1535 | | 22.0 | ÷.‡ | 600
580 | | | 2,4*+ | 200
160 | 2200 | - | നന് | 36
32 | | 20 | 2 | e. e. | 2.5 | 1 0.42 | 23
26 | 5.8 | 6.2 | 7.2 | 630 | 120
120 | 42 | | | | | 1045 | | | | | | | | 7.1 | Comp. | Comp. Ecology 5.8 | 5.8 | | 9 | | | | | | • | 17+ 4/ | 77 | 490 3 | 300 7 | ₽ | <u>س</u> | 2.0 | 1.3 | 24 | 5.8 | 7.0 | 7.3 | 652 | 120 | 4.1 | | | | 81/6 | 9/18 0800 | TEMEL LINES | | | | 0.0*** | | | | | 7 | | 4 | | | | -4 | 1.9 | | 25 | 5.8 | | 7.4 | 199 | 120 | 43 | | | | 1404 | the form don't last | | | | | | | | | | | | | | | | *************************************** | | | | | - | | | | | | *before dechlorination **after dechlorination +inhibited BOD results Day BOD (mg/L). 5 4.1 10 8.1 14 9.8 20 14 #### Plant Operation Figure 1 provides a schematic of the plant flow. Influent flow passes through the headworks/flume area into a wet well where it combines with return flows. Measurements of the Parshall flume and head heights were made by Ecology. Table 4 compares the field measurements with specifications for a standard 18-inch Parshall flume. The field measurements indicate that the throat of the flume does not meet standard specifications. Comparison of Ecology instantaneous head height measurements with the instantaneous in-plant flow meter suggests that the meter is calibrated as an 18-inch flume (Table 3). The plant flow measurements are probably slightly higher than the actual flow. The effluent flow meter should be repaired and used. The influent flume can be used as a rough check of effluent flow meter accuracy. Table 4 - Comparison of STP flume to standard flume dimensions* - Pullman, 9/86. | | Standard | | |-------------|-----------|-----------| | | dimension | STP flume | | Measurement | (in)+ | (in) | | | | | | A | 40 3/8 | 40 1/4 | | В | 30 | 30 3/8 | | С | 57 | 58 5/8 | | 2/3 C | 38 | 38 | | E (side 1) | 24 | 21 1/2 | | E (side 2) | 24 | 20 1/2 | | W | 18 | 17 1/4** | ^{*}standard dimensions and flume diagram from Stevens (1978) Flow then passes through the primary clarifiers and into a splitter box where it is combined with the bio-filter return flow. Sludge depth measurements showed sludge accumulation in the primary clarifiers was minimal, ranging from six inches to one foot. From the splitter box a portion of the flow is sent to the bio-tower while the remainder is combined with the return activated sludge (RAS) and sent to the ⁺for 18" flume ^{**}estimate; walls were bowed so throat width variable aeration basins. Bio-tower loading is maintained at approximately 90 lbs $BOD_5/D/1000~{\rm ft}^3$ of media to avoid odor problems that occur at higher loadings. Dissolved oxygen (D.O.) concentrations in the aeration basins are maintained at approximately 3.0 mg/L. The high D.O. is maintained to encourage nitrification. Ecology D.O. measurements made on 9/16 at 1040 hours using a YSI D.O. meter ranged from 3.0 to 4.0 mg/L (Table 2); within 0.5 mg/L of the permanent in-tank meters at the plant. The in-tank meters indicated that D.O. concentrations ranged from 2.7 to 4.2 mg/L on 9/17 at 0830 hours. MLSS concentrations were maintained in the 1300-to-1500 mg/L range (Table 2). Aeration basin effluent is routed to the secondary clarifiers. Sludge depth measurements in the secondary clarifiers ranged from zero to one foot. The clarified effluent is routed to the chlorine contact basin for chlorination followed by dechlorination and discharge into the South Fork of the Palouse River. Sludge depth at the tail end of the chlorine contact chambers ranged from 1.5 to 1.75 feet in 6 feet of water. Al Prouty reported that the basin had been cleaned the week before, indicating fairly rapid deposition. The chlorination/dechlorination process is a flow proportional system tied into the influent flow meter (it was tied into the effluent flow meter until meter inaccuracies were discovered). The chlorine residual concentration is monitored at two locations. A sensor at the head end of the contact basin continuously monitors the concentration and controls the chlorine dosing rate. A sensor at the tail end monitors the chlorine residual prior to dechlorination and controls the rate of $\rm SO_2$ addition. Every two hours the tail end meter switches to a sensor located after dechlorination which monitors the actual discharge concentration for 15 minutes. Al Prouty reported that meter precision is approximately \pm 0.06 mg/L, greater than the permitted 0.02 mg/L effluent concentration. Sludge handling at the plant involves several processes. Sludge from the primary clarifier is gravity thickened while waste activated sludge (WAS) is thickened using dissolved air flotation. The two thickened sludges are mixed then anaerobically digested. The digested sludge is dewatered using a belt filter press. The dried sludge is applied on agricultural land. A paved holding lagoon is used to store the dried sludge for later land application when immediate application is not possible. #### Data Analysis The inspection data show that good BOD₅ and TSS reductions were occurring (Table 2). Table 5 compares inspection data with applicable design capacity data from the NPDES permit. Although the inspection flow was slightly greater than the dry-weather design, the BOD₅ and TSS loads were far enough below capacity that the plant appears well within design capacity. Table 5 - Comparison of inspection data to NPDES permit design criteria - Pullman, 9/86. | | Permit
Design
Capacity | Inspection
Data* | |---|------------------------------|---------------------| | Monthly average -
dry-weather flow (MGD) | 2.7 | 2.85 | | Influent BOD ₅ loading (1bs/D) | 6000 | 4300 | | Influent TSS loading (lbs/D) | 6100 | 3100 | ^{*}Ecology analysis of Ecology composite samples. The influent was unusually dark when the 1030 hours grab sample was collected on September 16. Laboratory analysis found the sample to be highly colored (1800 units), with a slightly elevated TSS concentration (400 mg/L) and typical COD (Table 2). Determining the source of the discoloration was not pursued. Table 6 compares data collected prior to the upgrade with inspection data (Bernhardt and Yake, 1978). Effluent quality improvements in $\rm NH_3-N$ and chlorine residual concentrations are most noticeable. The higher $\rm BOD_5$ effluent concentration observed during the 1986 inspection is probably due to nitrification during the test as the inhibited $\rm BOD_5$ (CBOD_5) was approximately 13 mg/L less than the $\rm BOD_5$ (Table 2). The difference between the BOD $_5$ and CBOD $_5$ would likely increase during spring when the plant begins to nitrify, and fall when nitrification slows down. Pullman should consider running both BOD $_5$ and CBOD $_5$ tests on effluent samples to determine how much of a problem nitrogenous oxygen demand is during the test. If the problem causes difficulty meeting the BOD $_5$ permit limit, they may wish to request CBOD $_5$ effluent limits. Comparison of inspection data with NPDES permit limits is presented in Table 7. All parameters were within monthly permit limits except the NH $_3$ -N effluent concentration. Possible methods to attain additional NH $_3$ -N removal with the present facility include: - 1. Additional BOD removal by the bio-tower may encourage additional nitrification in the aeration basins. This may not be practical because the bio-tower is presently being loaded at the maximum rate at which nuisance odors do not occur. - 2. Increase MLSS concentrations in the aeration basins to encourage a higher sludge age and thus encourage a higher population of nitrifying organisms. Operator experimentation could determine the practicality of a higher MLSS. Table 6 - Comparison of 1978* and 1986 inspection data - Pullman, 9/86. | THE PROPERTY OF O | Flow (MGD) | 2.85 | 2.66 | | | - |
--|---------------------------------|------------|------------|------------|--------------------------|---| | Į. | Conductiva
(ms\sodmu) | 740 | 612 | 593 | | | | | T-LatoT | 6.4 | 5.9 | 3,3 | | | | | d−μ0q−0 | 3.1 | 3,5 | 3.0 | | | | I/gm) s | N−£ ON | 0.07 | <0.02 | <0.02 | | | | Nutrients (mg/L) | N-2ON | 0.01 | <0.02 | <0.02 | | | | | N-EHN | 19 | 14.4 | 13,1 | | | | (UTN) | Turbidity | 32 | 72 | 4 | | | | | SSANL | 20 | 54 | 2 | | | | Solids (mg/L) | SSI | 130 | 190 | 5 | | | | lids | SANL | 330 | 341
300 | 289 | | | | So | S.L | 620 | 635 | 368 | | | | (| COD (mg/L | 400 | 329 | 29 | | | | r) | BOD ^S (mg/ | 180 | 136 | 4 | | | | | Fecal Col | | | | 71-200
10 est. | | | eniro | Total Chl
Residual
(mg/L) | | | | <0.1
1.5-1.6 | | | be | Sample Ty | Comp. | Comp. | | Grab | | | | Date | 9/16-17/86 | 9/12-13/78 | 9/12-13/78 | 9/16–17/86
9/12–13/78 | | | | noitstS | o Influent | Effluent | | | | * = 1978 data from Bernhardt and Yake (1979) est. = estimated + = inhibited BOD_5 - 4.1 mg/L Table 7 - Comparison of inspection data to NPDES permit limits -Pullman, 9/86. | | NPDES Perm | it Limi t s | Insj | pection Da | ta+ | |-------------------------------------|------------|--------------------|-----------|------------|----------| | | Monthly | Weekly | Ecology | STP | Grab | | Parameter | Average | Average | Composite | Composite | Samples | | BOD 5 | | | | | | | 5 (mg/L) | 30 | 45 | 17 | 18 | | | (1bs/D) | 900 | 1350 | 404 | 428 | | | (% removal) | 85 | | 91 | * | | | TSS | | | | | | | (mg/L) | 30 | 45 | 7 | 6 | | | (1bs/D) | 915 | 1373 | 166 | 143 | | | (% removal) | 85 | | 95 | * | | | Fecal coliform | 200 | 400 | | | 160;200; | | (#/100 mL) | | | | | 160;71 | | pH (S.U.) | 6.0 ≤ 1 | pH ≤ 9.0 | | | 7.0;7.0 | | Flow (MGD) | 4.3 | | 2.85 | 2.85 | | | NH _o -N (mg/L) | | | | | | | $^{NH}_{3}$ -N (mg/L) (12/1 - 3/30) | Bring. | | | | | | (4/1 - 4/30) | 5 | | | | | | (5/1 - 10/30) | 1 | | 2.0 | 1.9 | | | (11/1 - 11/30) | 5 | | | | | | Chlorine residual (mg/L) | <0.02 | | | | <0.1 | ⁺Ecology laboratory analyses *Influent compositor malfunction prevented calculation 3. Improving the environment in the aeration basins may encourage further nitrification. High D.O. concentrations are maintained in the basins to encourage maximum growth rates (2.7 to 4.2 mg/L during the inspection). The pH should also be considered. Effluent pH during the inspection was 7.0 and the alkalinity was 120 mg/L. Maximum nitrification is thought to occur in the pH range of 7.2 to 9.0 (Metcalf and Eddy, 1979). When using fine bubble diffusers, maintaining an alkalinity of 175 mg/L as CaCO₃ is predicted as necessary to keep the pH at 7.2 (EPA, 1975). Review of effluent pH data from several months of DMR data is presented in Table 8. The data suggest that pH may be inhibiting nitrification at the plant. Monitoring pH and alkalinity in the secondary system and adjusting as necessary may improve nitrification efficiency. Table 8 - DMR Effluent pH Data - Pullman, 9/86. | Date | pH range (S.U.) | |-------|-----------------| | | | | 6/86 | 6.4 - 7.1 | | 5/86 | 6.4 - 7.0 | | 4/86 | 6.4 - 6.8 | | 3/86 | 7.0 - 7.3 | | 2/86 | 6.3 - 7.0 | | 1/86 | 6.6 - 7.0 | | 12/85 | 6.4 - 7.0 | The NH $_3$ -N permit limits were reviewed to estimate the NH $_3$ -N toxicity protection provided in the receiving water. The one-hour and four-day NH $_3$ -N toxicity criteria for the South Fork of the Palouse River were calculated using Ecology ambient water quality monitoring data from station 34B110 located at the State Street bridge upstream of the STP (EPA, 1986; Ecology, 1986). Individual criteria were calculated for each monthly sample collected in water years 1982-1986. The allowable NH $_3$ -N concentration in the STP effluent at which the criteria would not be exceeded was then calculated for the inspection and maximum permitted flow rates. Figures 2-5 compare the allowable effluent concentrations to the existing permit limits. Applicable formulas and calculations are provided in Appendix I. The figures suggest the existing permit limits usually provide adequate one-hour criteria protection, but often fail to provide adequate four-day protection. Unfortunately, downstream ambient receiving water data are not available to more accurately estimate actual toxicity criteria. Receiving water data collected during the inspection showed the effluent significantly changes receiving water pH and temperature, decreasing NH₃-N toxicity in the receiving water (Joy, 1987). Table 9 summarizes NH₃-N toxicity-related changes near the STP. Collection of upstream (State Street Bridge) and downstream (Old City Dump Road Bridge) pH and temperature data on a routine basis by STP personnel is suggested so NH_3-N effluent limits can be properly Figure 2 - Comparison of Permit Limits and 1-hour NH3-N Toxicity Criteria at the Inspection Flow Rate - Pullman, 9/86. Table 9 - Upstream and Downstream Ammonia Toxicity Criteria Comparison* - Pullman, 9/86. | | | | | | Percent | Toxicity | Criteria | | Coxicity Criteria | |-------------------|------|------|---------------|----------|--
--|---|------|--| | | | | Temp. | Temp. pH | un-fonized | (mg/L un-ionized NH2-N) | ized NH2-N) | | (N-,-H) | | Station | Date | Time | (၁۸) | (S.U.) | .) NH ₃ -N | 1-hour | 4-day | | 4-day | | | | | | | And many company of the formal property and the company of com | The state of s | CONT. LANCE TO SERVICE THE PARTY OF THE PARTY. | | STATE OF THE PARTY | | Upstream** | 9/16 | 1400 | 1400 15.6 | 7.9 | 2.22 | 0.150 | 0.029 | 6.8 | ۳.
د | | Downstream** | 9/16 | 1230 | 18.1 7.5 | 7.5 | 1.08 | 0.131 | 0.019 | 12.1 | 1,8 | | | | | | | | | | | | | $Upstream^{**}$ | 9/17 | 1010 | 010 12.3 7.9 | 7.9 | 1.74 | 0.119 | 0.023 | 6,8 | ر
د | | Downstream** 9/17 | 9/17 | 0630 | 1930 17.0 7.3 | 7,3 | 0,63 | 0.096 | 0.011 | 15.2 | I.8 | **Upstream samples taken at State St. Bridge; downstream samples taken at Old City Dump Road Bridge *Data from Joy (in preparation) reviewed and changed as necessary. Collection of data two times per day (early morning and midafternoon) once per week should be adequate. The dechlorination system deserves further analysis. Al Prouty reported that the maximum SO, injection rate is 24 lbs/D. At the peak flow rate measured during the inspection (5.78 MGD), that rate would be adequate to remove a chlorine residual of 0.5 mg/L (calculation assumes 1 mg/L SO, removes 1 mg/L chlorine residual; WPCF, 1977). Ecology chlorine residual concentration measurements roughly corresponding to the peak flow rate were 0.3 mg/L prior to dechlorination and <0.1 mg/L after chlorination. Reserve capacity of the SO, system appears minimal; an increase should be considered in the near future. Metals analysis results from the digested sludge sample are presented in Table 10. The results indicate that the Pullman STP sludge was within the range of concentrations found at activated sludge plants statewide during previous Class II inspections. Table 10 - Sludge metals data - Pullman, 9/86. | | | Summary of | f Statewide Data | a* | |----------|----------------|----------------|------------------|---------| | | | | | Number | | | STP Sample** | Range | Geometric Mean | of | | Metal | (mg/kg dry wt) | (mg/kg dry wt) | (mg/kg dry wt) | Samples | | | | | | | | Cadmium | 5.0 | <0.1 - 25 | 6.9 | 28 | | Chromium | 62 | 15 - 300 | 60 | 28 | | Copper | 426 | 75 - 1700 | 370 | 28 | | Lead | 90 | 34 - 600 | 220 | 28 | | Nicke1 | 22 | <0.1 - 62 | 22 | 24 | | Zinc | 890 | 165 - 3370 | 1160 | 28 | ^{*}summary of data collected during previous Class II inspections at activated sludge plants throughout the state **percent solids = 27% #### Laboratory Procedures Review Laboratory procedures were reviewed with Pullman STP staff by Ecology roving operator Otis Hampton. A copy of the "Laboratory Procedural Survey" he completed is included in Appendix II. Results of samples split for analysis by both the Ecology and Pullman STP laboratories are presented on Table 11. Results for most samples compare closely, although the Pullman STP TSS results were greater in all cases. Completed TSS test filters should be redried and reweighed to assure they are being adequately dried. Once adequate drying is assured, quarterly rechecks using the redry/reweigh technique are suggested for quality assurance. Table 11 - Comparison of split sample laboratory results - Pullman, 9/86. | Station | Sampler | Laboratory | BOD ₅
(mg/L) | TSS
(mg/L) | NH ₃ -N
(mg/L) | |----------|----------|--------------------|----------------------------|---------------|------------------------------| | Influent | Ecology | Ecology
Pullman | 180
202 | 130
152 | 19
22 | | | Pullman* | Ecology
Pullman | 250
275 | 250
282 | 24
21 | | Effluent | Ecology | Ecology
Pullman | 17
19 | 7
12 | 2.0
2.2 | | | Pullman | Ecology
Pullman | 18
24 | 6
14 | 1.9
2.2 | ^{*}compositor malfunction prevented collection of a complete sample #### RECOMMENDATIONS AND CONCLUSIONS The STP was providing good BOD₅ and TSS removals, and substantial nitrification during the inspection. Effluent parameters were below or within NPDES permit limits with the exception of the NH₃-N concentration which was greater than the allowed monthly limit. Increasing MLSS concentrations and/or controlling pH in the aeration basins may increase NH₃-N removal. Comparison of the permitted ammonia discharge to receiving water toxicity criteria was inconclusive due to pH and temperature impacts the discharge has on the receiving water. Limited receiving water monitoring by STP personnel as outlined in the discussion is recommended. Other areas discussed that may need further attention include: - The throat of the influent Parshall flume being used for flow monitoring was not standard, likely decreasing accuracy. Repair and use of the in-line effluent flow meter is suggested. - 2. Sludge seemed to be accumulating rather quickly in the chlorine contact chambers. Frequent monitoring and sludge removal as necessary are suggested. - 3. Preliminary calculations suggest that the capacity of the SO injection system is being approached during daily peak flows. Capacity should be checked and increased if necessary. - 4. The difference between the BOD, and CBOD, test results in the effluent suggests that the nitrogenous oxygen demand may influence the BOD, test. The city should consider running side-byside BOD, and CBOD, tests, especially during transition periods in and out of nitrification, to see if they should pursue any CBOD, permit limits. Sample splits suggested that the STP laboratory was analyzing samples accurately. Checks to assure that TSS filters are completely dried during the analysis are suggested. #### REFERENCES - Bernhardt, J. and W. Yake, 1979. "Assessment of Wastewater Treatment and Receiving Water Quality South Fork of the Palouse River at
Pullman, Washington," Washington State Department of Ecology. Project Report DOE-PR-5, February 1979. - Ecology, 1986. Retrieval of Ambient Water Quality Data for Station 34B110. Water Quality Investigations Section, Olympia. - EPA, 1975. Process Design Manual for Nitrogen Control, October 1975. - EPA, 1986. Quality Criteria for Water, EPA 440/5-86-001, May 1, 1986. - Joy, J. (in prep). Report on the South Fork of the Palouse River Receiving Water Investigation; September 16-17, 1986. - Metcalf and Eddy, 1979. <u>Wastewater Engineering/Treatment Disposal/</u> Reuse, 2nd Ed. - Parametrix, 1983. "Pullman, Wash. Wastewater Treatment Plant Improvements." - Stevens, 1978. Stevens Water Resources Data Book, 3rd Ed., April 1978. - WPCF, 1977. Wastewater Treatment Plant Design, MOP/8. ### APPENDIX I Calculation of $\rm NH_3-N$ toxicity information. Appropriate formulas taken from EPA (1986). 1-hour criteria (mg/L un-ionized NH₃-N) = $$\frac{0.52}{\text{FT x FPH x 2}}$$ x 0.822 where: FT = $$10^{\circ} [0.03(20-T)]$$ FPH = 1 if 8 < pH < 9* = $\frac{1 + 10^{(7.4 - pH)}}{1.25}$ if $6.5 \le pH \le 8$ 4-day criteria (mg/L un-ionized NIi₃-N) = $$\frac{0.80}{\text{FT x FPH x ratio}} \times 0.822$$ where: Ratio = 16 if $$7.7 \le pH \le 9*$$ $$= \frac{24 \times 10^{(7.7 - pH)}}{1 + 10^{(7.4 - pH)}} \text{ if } 6.5 \le pH \le 7.7$$ Flow rates for calculating the maximum downstream load = SF Palouse flow + STP flow. | | Crite | ria | |------------------------------|--------|-------| | | 1-hour | 4-day | | Inspection flow (MGD) | 6 | 2.85 | | Maximum permitted flow (MGD) | 9 | 4.3 | *An FPH of 1 and a ratio of 16 were used when the pH exceeded 9.0. Table La - Calculation of acceptable NHS-M discharge concentrations for STP design flow conditions - Pullasn, 9/86. | | | | MPDES
NH3-N | limits
(mg/L) | | | | | | | | | | | | | | | | | | 9 | 3 5 | 8 | 90 | 5.00 | 90 | 20.1 | 20.5 | 200 | 1.00 | 8 | 3 2 | 20.1 | 00:1 | |------------------------|--|---|--|--------------------|------------------|----------|--------|--------|----------------|---------|----------|----------|--------|--------|---|---------|---------|---------|----------------|--------|--------|---------|---------|--------|----------|------------|---------|--------|------------|--------|--------|---------|--------|--------|--------| | | | | | 4 day | | 168.248 | 11.258 | 5.010 | 4.886 | | 206.265 | 50,246 | 4,552 | 10,246 | | 72,657 | 10 581 | 11.718 | 20 01 | 20.00 | 20.614 | 7.88 8 | 0.677 | 26 153 | 74 416 | 2.888 | 14 041 | 1170 | 127 | 306 | 0.643 | 1 404 | 0.475 | 0.708 | 0.499 | | | P affluent | concentrations (mg/L) | #-CHW | i hour | | 842.231 | 34,865 | 22.091 | 18,530 | | 840.729 | 156, 983 | 20,609 | 37,249 | | 196,904 | 17. AB4 | 3B, 553 | 570 911 | 70 171 | 61.366 | 57, 130 | . 468 | 76.440 | 231, 224 | 12,038 | 54 547 | 1.66.6 | 2 120 | A 703 | 2,360 | 4.053 | 7.474 | 100 | 2,011 | | | inealis 9 (F) attions | oncentrati | XH3-X | 4 day | | 7##*0 | 6.0.0 | 0.034 | 0.028 | | 0,557 | 0.314 | 0.049 | 0.048 | | 0.453 | 0,181 | 0,117 | 0.110 | 0 250 | 407.0 | 0,254 | 0.147 | 0.274 | 0.449 | 0,075 | 0.955 | 0.094 | 0.081 | 0.094 | 0,080 | . 818 | 0.064 | 0.062 | 0,083 | | | î | | unionized | 1 hour | 070 | | 0.244 | 0.149 | 0.106
0.169 | , | 2.270 | 0.981 | 0.220 | 0.176 | | 1.226 | 0.575 | 0,385 | 0.428 | 717 | 0.173 | 0.704 | 0.507 | 0.868 | 1,387 | 0.313 | 3,004 | 0.532 | 0.394 | 0.330 | 0,295 | 2,109 | 0.367 | 0.418 | 0,334 | | | 11
11
11
12
12
12
13
13
14
14
14
14
14
14
14
14
14
14
14
14
14 | | auce | A day | 570 ST | 200.0 | 778.7 | 1.213 | 1.006 | | 19.472 | 11.262 | 1,743 | 1,734 | | 16,233 | 6.473 | 4.198 | 3.943 | 0 | 300 | 9.123 | 5,263 | 9,831 | 16,119 | 2.690 | 34,265 | 3,385 | 2,900 | 3,357 | 2,880 | -65,181 | 2,301 | 2,211 | 2.970 | | | # | | STP
allowance | 1 hour | 675 8V) | 707 '01 | CA7.81 | 11.172 | 7,984 | | 1/0,384 | 73.645 | 16.521 | 13.197 | | 92.030 | 43,133 | 28.909 | 32, 133 | 50 174 | 101.00 | 52,824 | 38.038 | 65,122 | 104,134 | 23,465 | 225,470 | 39.945 | 29.541 | 24.796 | 22.132 | 158.267 | 27.562 | 31,372 | 25.057 | | : | unionized NH3-N (16s/d) | | | upstream .
load | 7.687 | 201.0 | 0.740 | 7/9*6 | 0.167 | i | 1.465 | 909.0 | 1.148 | 0.527 | | 1.222 | 1.313 | 1,002 | 0.511 | 1.407 | 744.1 | 0.393 | 1.094 | 2.569 | 0.873 | 1.340 | 10,270 | 2.087 | 2.242 | 0.642 | 0.512 | 116.639 | 1.000 | 3,024 | 0.286 | | | unionized | € DE | table
am load | 4 days | 10 14,0 | 100.11 | 3.107 | C88. | 2,164 | | 21.43/ | 11.868 | 2.842 | 2,261 | | 17.455 | 7.786 | 5.200 | 4,455 | 10 791 | 10.71 | 9.516 | 6.357 | 12,401 | 16.993 | 4.029 | 44,535 | 5.472 | 5,142 | 3.999 | 3,391 | 51.458 | 3,301 | 5,235 | 3,256 | | | bazionium
essessessessessesses | Sex 2 sec | acceptable
downstream load | 1 hour | 152 049 | 10.10 | 0/0.01 | | 13,179 | | 1/2, 548 | /4.251 | 17.669 | 13.724 | | 93,252 | 44.446 | 29.911 | 32,644 | 767 65 | 37.060 | 53,216 | 39, 132 | 159.79 | 105.007 | 24.805 | 235,741 | 42.032 | 31,783 | 25,439 | 22.644 | 274,906 | 28.562 | 34,396 | 25.343 | | | | *********** | Criteria | (MH3-M | 8 005 | 0000 | 710.0 | 9,010 | 0.010 | 000 | 0.00 | 0.012 | 0.013 | 0,010 | | 0.012 | 0.019 | 0.014 | 0,007 | 0 017 | 70.0 | 0.018 | 0.030 | 0.016 | 0.011 | 0.019 | 0.020 | 0.041 | 0.025 | 0.023 | 0.024 | 0.036 | 0.041 | 0.035 | 0.041 | | un. | 4 08/ | *********** | | н | 1, 589 | 2 100 | 2.100 | 0,870 | 3,654 | , | 3.172 | 7.30/ | 3,192 | 3.565 | | 2.818 | 2,123 | 2.780 | 2.999 | 7 775 | 6/7.7 | 2.138 | 1.384 | 2,489 | 2,388 | 2.183 | 2,023 | 1.000 | 1.667 | 1.811 | 1.679 | 1.148 | 1.000 | 1.172 | 1.000 | | a) cui at 1 on | ;
;
;
;
;
;
; | 6
6
8
8
8
8
8
8
8 | | Ratio | 77. 943 | 000 71 | 000 11 | 10.000 | 16,000 | | 25, 745 | 18.372 | 16,000 | 16,000 | | 16,000 | 16.000 | 16,000 | 21.199 | 14.000 | 000.01 | 16,000 | 16,000 | 16.000 | 18.525 | 16.000 | 16.000 | 16.000 | 16,000 | 16,000 | 16.000 | 16.000 | 16.000 | 16.000 | 16.000 | | 2 2 1 2 1 2 2 | | | Criteria
unionized | MH3-N
(ag/L) | 0.037 | 670.0 | 700.0 | 700'0 | 0.052 | 0 | 750.0 | 0.07 | 0.067 | 0.050 | | 0.063 | 0.101 | 0.073 | 0.050 | 0.089 | | 0.095 | 0.154 | 0.082 | 0.069 | 0.098 | 0.106 | 0.244 | 0.128 | 0.118 | 9,127 | 0.186 | 0.239 | 0,182 | 0.214 | | | 1 haur | | | Нен | 1.600 | | 1.1.10 | CEA-1 | 1.201 | 3 | 009.1 | 1,505 | 1.001 | 1.201 | | 1.201 | 1.001 | 1.053 | 1,435 | 1,053 | 20.1 | 1,053 | 1.000 | 1.053 | 1,305 | 1.000 | 1.000 | 1,000 | 1.000 | 1.000 | 1,000 | 1.000 | 1.000 | 1.000 | 1,000 | | | #
!
!
! | | | Ŀ | 589 | 1 105 | 2 077 | 0,0,0 | 3,664 | 4 4 9 3 | 3.172 | 7.30/ | 3,192 | 3,565 | | 2.818 | 2,123 | 2,780 | 2,999 | 2,775 | 2 | 2,138 | 1.384 | 2.489 | 2,388 | 2,183 | 2,023 | 0.877 | 1.667 | 1.811 | 1.679 | 1.148 | 0.895 | 1.172 | 1.000 | | | | | unionized | | 0.001 | 00 0 | 100.0 | 0.00 | 0.002 | 900 | 0,000 | 0.001 | 0.00 | 0.003 | | 0.001 | 0.004 | 0,003 | 0.001 | 0.003 | 2 | 0.001 | 0.006 | 0.003 | 0.001 | 0.008 | 0.002 | 0.022 | 0,013 | 0.002 | 0.005 | 0.083 | 0.023 | 0.027 | 0.007 | | | | lata | | unionized | 0,235 | 007 0 | 0 475 | 0.000 | 0.460 | 770 0 | 0/7*0 | 0,623 | 1.068 | 0.472 | | 0.623 | 1.706 | 0.999 | 0.366 | 1,258 | | 1,350 | 30,747 | 1.135 | 0.600 | 2,597 | 6.805 | 15,365 | 18,568 | 7.641 | 12,493 | 52,019 | 15,085 | 29.685 | 16.603 | | | | Palouse ambient data | | (J/be) | 0,37 | <u>a</u> | 27.0 | 20.0 | 0.53 | 0 | 0,10 | 0.10 | 0.57 | 0,56 | | 0.14 | 0.21 | 0.30 | 0.24 | 0.20 | , | 0.09 | 0.02 | 0.30 | 0.10 | 0.29 | 0.07 | 0.14 | 0.01 | 0.09 | 0.04 | 0.16 | 0.15 | 0.04 | 0.04 | | | | SF Palous | tt
11
12
14
15
16
16
16
16
16
16
16
16
16
16
16
16
16 | (89) | 7.4 | | 0 0 | | 7.7 | | | 0., | 0.8 | 7.7 | | 1.1 | 8.0 | 7,9 | 7,5 | 7.9 | | 7.9 | 9.2 | 7.9 | 7.6 | 8.3 | 8.6 | 8.6 | 0.9 | 8.6 | 80 | 9.5 | 8.6 | | 6,00 | | 1001 · NEW 100 | | | | (1) | ₩ [*] ? | . ~ | | | 1.3 | ,
, | 7.5 | | 3.2 | 1.6 | | 2.0 | | 5.2 | - - | 8. | ; | 0'6 | 15.3 | 6.8 | 7.4 | œ
- | 9.8 | 21.9 | 12.6 | 11.4 | 12.5 | 18.0 | 21.6 | 17.7 | 20.0 | | | | | | (cfs) | 744.0 | 47.0 | 2 2 | 2 4 5 | 36.0 | 750.0 | 0.00 | 100.0 | 35.0 | 37.0 | ; | 260.0 | 0.89 | 62.0 | 108.0 | 110.0 | | 0.09 | 33.0 | 140.0 | 270.0 | 33.0 | 400,0 | 18.0 | 32.0 | 26.0 | 0'61 | 260.0 | 8,2 | 21.0 | 9.0 | | 5101111000 to 1 161110 | | | | time | 1440 | 1175 | 2113 | 1170 | 1150 | 155 | 0001 | 1130 | 1045 | 1155 | | 1343 | 1800 | 1120 | 1205 | 1150 | | 1430 | 1235 | 1110 | 1120 | 1155 | 1415 | 1225 | 1105 | 1145 | 1150 | 1620 | 1215 | 1120 | 1202 | | | | | | ф | 26 | 25 | 3 5 | . 4 | 7 | ñ | 7 6 | 77 | 1 | = | | 2 | 22 | 9 | 17 | = | | 6 | 6 | 10 | 2 | 13 | 10 | 54 | c c | r~ | 13 | 40 | 82 | 13 | 01 | | | | | date | month | | - | | | | c | 4 6 | 7 ' | 2 | 7 | ٠ | ~ | 77 | t-7 | m | ٢ | | •द | • | • | *** | 4 5 | 'n | CB | ל"ט | רש | ur; | 49 | 9 | -6 | 9 | | | | | 6
6
6 | year | 1982 | 1983 | 499 | 1001 | 1986 | 1080 | 7001 | 001 | 1984 | 1986 | | 7841 | 1983 | 1984 | 1985 | 1986 | | 1982 | 1983 | 684 | 1985 | 1986 | 1982 | 1983 | 1984 | 1985 | 9861 | 1982 | 1983 | 1984 | 9861 | Table la (cont d) - Calculation of acceptable MH3-M discharge concentrations for 5TP design flow conditions - Pullman, 9786. | | | į | MH3-N | (mg/L) | 90 | 00.1 | 00: | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 00.1 | 1.00 | 1.00 | 1.00 | 90. | 00.1 | 96:1 | 90 | 5.00 | 5.00 | 5.00 | 2.00 | | | | | |
--|--|-------------------------|---|------------------|----------------|--------|--------|------------|--------|--------|--------|--------|------------|--------|--------|--------|--------|--------|--------|--------|--------------|--------|--------|--------|---------|--------|--------|--------|-------------|---------|--------| | | | | 200 | 4 day | 88 | 0.392 | 0.099 | 0.727 | 0,138 | 1.89 | 0,357 | 0.416 | 1.335 | 0.805 | 0.514 | 0.523 | 1.827 | 3,101 | 1.836 | 3,192 | 0.792 | 3.870 | 0,937 | 2.267 | 3,297 | 0.553 | 3,589 | 5,443 | 6.530 | 9.024 | 0.007 | | | P effluent | (1/ba) suo | #-0XX | 1 hour | 5 035 | 7.041 | 0.564 | 3.174 | 0,852 | 7.881 | 1.628 | 1,963 | 5,779 | 3, 106 | 2,115 | 2,537 | 7.666 | 17,492 | 7.266 | 12,436 | 3,348 | 27,527 | 6.274 | 8.387 | 12, 165 | 3.850 | 13,628 | 18.271 | 23,268 | 30.651 | 701.0 | | | neulthe STP efficentific | concentrations (mg/L) | X-2.4 | 4 day | 0.073 | 0.061 | 0.057 | 0.061 | 0.050 | 0,062 | 0.054 | 0.043 | 090.0 | 0.056 | 0.051 | 0.038 | 0.052 | 0.017 | 0.034 | 0.036 | 0.048 | 0.009 | 0.018 | 0.039 | 0,052 | 0.012 | 0.047 | 0.043 | 0.044 | 0.069 | 6,000 | | | 7 | Ü | unionized NH3-N | 1 hour | 0.309 | 0.319 | 0.328 | 0.266 | 0,306 | 0.259 | 0.245 | 0.204 | 0.258 | 0.215 | 0.211 | 0.183 | 0.220 | 0.093 | 0.135 | 0,140 | 0.202 | 0.061 | 0.122 | 0,145 | 0.194 | 0.085 | 0.178 | 0.145 | 0.157 | 0.236 | 0001 | | | 11
11
11
11
11
11
11
11 | | ance | 4 day | 2.617 | 2.202 | 2.061 | 2,183 | 1,777 | 2.232 | 1.928 | 1.550 | 2,141 | 1.998 | 1.836 | 1,354 | 1.879 | 0.593 | 1,224 | 1,289 | 1.716 | 0,307 | 0.653 | 1.401 | 1.881 | 0.438 | 1.681 | 1.554 | 1.581 | 2.492 | 047.0 | | 5 | .0. | į | allowance | 1 hour | 23, 162 | 23.970 | 24.626 | 19,943 | 22,990 | 19.469 | 18.371 | 15,290 | 19,398 | 16.133 | 15.820 | 13,755 | 16,502 | 866.9 | 10.139 | 10.510 | 15.171 | 4.566 | 9,150 | 10,847 | 14.527 | 6.383 | 13,359 | 10.916 | 11.789 | 17,715 | 10.0 | | China to the Contract of C | SECTION CARS | | | upstream
load | 0.091 | 0.169 | 0.753 | 0.203 | 0,682 | 0.142 | 0.195 | 0.224 | 0.087 | 0.133 | 0.056 | 0,311 | 0.085 | 0.036 | 0,066 | 0.034 | 0.156 | 0.006 | 0.660 | 0.208 | 0.244 | 0.438 | 0.355 | 0.112 | 0.359 | 0.584 | ,
, | | 700,00 | nazananan
nazanan | 608 | acceptable
nstream load | 4 days | 2,703 | 2.370 | 2.813 | 2.386 | 2.459 | 2,374 | 2.122 | 1.773 | 2.227 | 2.131 | 1.892 | 1,666 | 1.964 | 0.629 | 1.290 | 1.323 | 1.872 | 0,313 | 1.313 | 1.609 | 2.126 | 0.876 | 2.038 | 1.665 | 1.939 | 3.076 | 2 | | | ******* | ene ixee | #ap | 1 hour | 23, 252 | 24,138 | 25.378 | 20.146 | 23.673 | 19,610 | 18,565 | 15.513 | 19,485 | 16.266 | 15.876 | 14.067 | 16.587 | 7.034 | 10,205 | 10.544 | 15.327 | 4,572 | 9.809 | 11,055 | 14.771 | 6.821 | 13,714 | 11,028 | 12.147 | 18,300 | | | | | # E | unionized
unionized | (J/bu) | 0.041 | 0.041 | 0.041 | 0.038 | 0.041 | 0.036 | 0,037 | 0.031 | 0.039 | 0.025 | 0.030 | 0,026 | 0.031 | 0.010 | 0.017 | 0.018 | 0.027 | 0.004 | 0.015 | 0.013 | 0.018 | 0.011 | 0,015 | 0.012 | 0.010 | 9.011 | | | us | 4 day | | | E | 000 | 000.1 | 1.000 | 1.086 | 1,000 | 1,156 | 1.117 | 1.337 | 1.064 | 1.622 | 1.393 | 1.556 | 1,318 | 2,168 | 2,404 | 2.051 | 1.503 | 2.559 | 2.818 | 3,126 | 2.259 | 3.715 | 2,685 | 3,373 | 3,873 | 3.467 | 2 | | Uriteria calculation | | ************ | | Ratio | 16.000 | 16.000 | 16.000 | 16,000 | 16,000 | 16,000 | 16.000 | 16.000 | 16,000 | 16.000 | 16.000 | 16,000 | 16.000 | 21,199 | 16.000 | 16.000 | 16,000 | 29.361 | 16.000 | 16,000 | 16,000 | 16.000 | 16,000 | 16.000 | 16,000 | 16.000 | **** | | Criteria c | | , | unionized | (3/6a) | 0.228 | 0.249 | 0.235 | 0.197 | 0.239 | 0.185 | 0,191 | 0.160 | 0.201 | 0.132 | 0.153 | 0.137 | 0.162 | 0.069 | 0.089 | 0.093 | 0.142 | 0.040 | 0.076 | 0.068 | 0.095 | 0.058 | 0.080 | 0,060 | 0.052 | 0.059 | > | | | 1 hour | | | FPH | 1.000 | 1.000 | 1.000 | 1.000 | 1,000 | 1.001 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1,000 | 1,001 | 1.435 | 1.000 | 1.118 | 1.000 | 2,068 | 1.000 | 1.000 | 1.001 | 1.000 | 1.001 | 1.053 | 1.053 | 1.053 | > | | | | | | Н | 0.966 | 0.859 | 0.908 | 1.086 | 0.895 | 1.156 | 1.117 | 1.337 | 1.064 | 1.622 | 1.393 | 1.556 | 1,318 | 2.168 | 2,404 | 2.031 | 1.503 | 2.559 | 2.818 | 3.126 | 2,259 | 3,715 | 2,685 | 3,373 | 3,873 | 3,467 | 3 | | | | | unionized | - 1 | 0.003 | 0,008 | 0.023 | 0,008 | 0.029 | 0.005 | 0,009 | 0.010 | 0.004 | 0,003 | 0.002 | 0.012 | 0.003 | 0.001 | 0.005 | 0,001 | 0.002 | 0.000 | 0.012 | 0.005 | 0.003 | 0.010 | 0.004 | 0,001 | 0.002 | 0,002 | ;
> | | | | ata
ata | 7 | unionized | 6.129 | 15,649 | 58,174 | 8.372 | 35,971 | 3,291 | 15.038 | 10,379 | 4.472 | 6.921 | 9,965 | 7,223 | 2.868 | 0.533 | 1.859 | 1.126 | 6.037 | 0.221 | 1.943 | 1.723 | 1.591 | 2.209 | 1.306 | 0.796 | 0.675 | 0.770 | | | | | SF Palouse ambient data | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (mg/L) | 0.05 | 0,05 | 0.04 | 0.09 | 0.08 | 0.14 | 90.0 | 0,10 | 0.09 | 0.04 | 0.05 | 0,16 | 0,111 | 0.25 | 0.09 | 0.08 | 0.08 | 0.07 | 0.63 | 0.14 | 0.19 | 0,46 | 0.28 | 0.13 | 0.34 | 0.32 | : | | | | SF Palouse | 7 | (0.5) | 8.3 | 3.8 | 5.5 | 9. | 9.1 | 8,0 | E 10 | 8.6 |
-: | 8.5 | 8,6 | 8 | 8,0 | 7.5 | 8.1 | 7.8 | ₩. | 7.2 | 8.2 | 8.3 | 8,0 | 9.4 | 9,0 | 7.9 | 7.9 | ~ · · · | ; | | 77.96. | | 1 | ; | (D) | 20.5 | 22.2 | 21.4 | 18.8 | 21.6 | 17.9 | 18.4 | 15,8 | 14,1 | 13.0 | 15.2 | 13.6 | 16.0 | 8.8 | 7.3 | 9.6 | <u>.</u> | 6.4 | 5.0 | 5.5 | 8.2 | 1.0 | 5.7 | 2.4 | 4 .0 | 2.0 | ; | | 15 - PULLING | | 1 | 2017 | (C+S) | ių. | .0 | 0,9 | 5.0 | ** | 5.7 | 4.0 | 0,4 | 0.
* | 8.9 | 5,2 | 5,0 | 5.0 | 5.0 | 7,3 | 7.0 | 9.9 | 7.0 | 10.0 | 0.91 | 15.0 | 9.0 | 18.0 | 20.0 | 24.0 | 10.0 | • | | of air design flow Conditions - rullman, 9/86 | | | | tise | 1130 | 1220 | 1210 | 1210 | 1310 | 1240 | 1125 | 1155 | 1145 | 1135 | 1235 | 1210 | 1220 | 610 | 1115 | 1210 | 1120 | 800 | 1125 | 1215 | 1140 | 1205 | 1600 | 1055 | 1220 | 1200 | ì | | 1011 UD 1382 | | | | ήaγ | ganer
ganer | 6 | 10 | c c | 11 | 23 | ** | ** | 17 | * | 27 | = | 6 | 20 | 16 | 52 | o- | | 16 | 56 | 22 | ō- | တ | 28 | 50 | I 0 | | | 101 311 | | | date | month | 7 | | 7 | 7 | 8 | œ | ac | œ | a o | o- | 0 | o- | o- | 10 | 10 | 10 | 10 | | == | = | = | | 12 | 1.2 | 15 | 77 | : | | | | | | year | 1982 | 1983 | 1984 | 1986 | 1982 | 1983 | 1484 | 1985 | 1986 | 1982 | 1983 | 1881 | 1986 | 1961 | 1982 | 1983 | 1984
1984 | 1861 | 1982 | 1983 | 1861 | 1985 | 1861 | 1 982 | 1983 | 1984 | | | | | | | | | ς. | Table 1b - Calculation of acceptable NH3-W discharge concentrations STP inspection conditions - Pullean 9/86. | | | MPDES
MHT-N | | (#d/F) | | | | | | | | | | | | | | | | | 5.00 | 9 | 00.5 | | 5.00 | 9 | 2 2 | 8 | 8 | 00. | 9 | >>: | 3 6 | . 00 | |--|---|--|---|-----------|----------|---------|--------|--------|--------|-----------|---------|--------|--------|---|---------|---------|---------|---------|------------|---|-----------|--------|---------|---------|--------|---------|--------|----------|--------|--------|---------|--------|---------|--------| | | | 20 | | 4 day | 787 947 | 70, 707 | 701.01 | 44.4 | 14.402 | 110 148 | 74 826 | 4.779 | 14,398 | | 108,606 | 15,373 | 770 71 | 10.01 | 70. 790 | 7 | 27.725 | 0.470 | 15, 721 | 117.038 | 3,979 | 21.029 | 0.787 | 588 | 1.693 | 0.868 | g07 8- | 200 | 0.250 | 0.624 | | P effluent | (7/ b#) suo | 第一次出版 | | 1 hour | 1255 330 | 170 27 | 20 204 | 23.197 | 49.817 | 1257, 246 | 279.773 | 77.747 | 50.519 | | 290.074 | \$7.542 | 01.0 14 | 148 581 | 88.759 | | 74, 634 | 2,218 | 111.023 | 141.048 | 16.148 | 65.477 | 4,392 | 2,830 | 5. 703 | 3.024 | 000 | 2 856 | 1 201 |
2.364 | | allowable STP | concentrations (mg/L) | *- CEX | 61
61
61
61
61
61
61
61
61
61
61
61
61
6 | 4 day | 0.665 | 2110 | 0.046 | 0.037 | 9,066 | 0.837 | 0.468 | 0.067 | 0.068 | | 0.677 | 0.262 | 0.169 | 0.167 | 0,382 | | 0.374 | 0.208 | 0.405 | 0.672 | 0.103 | 1.431 | 9,121 | 0.100 | 0.129 | 0,108 | -2,761 | 0.075 | 0.075 | 0.104 | | Tie. | 0 | N-CHW basington | | 1 hour | 2,950 | 0.334 | 0.197 | 0.133 | 0,229 | 3,384 | 1,436 | 0.296 | 0.238 | | 1.807 | 0.811 | 0.541 | 0.617 | 1.117 | | 1,008 | 0.682 | 1.260 | 2.046 | 0.419 | 4.452 | 0,675 | 0.525 | 0.436 | 0.378 | 3.069 | 0.430 | 0.575 | 0.393 | | 61
81
82
88
89
80
81
67
64 | , | ance | | 4 day | 15.805 | 2.475 | 1.088 | 0.882 | 1.575 | 19,905 | 11,116 | 1,584 | 1,615 | | 16.083 | 6.234 | 4.024 | 3,854 | 4.087 | | 8.849 | 4.894 | 9.637 | 15.978 | 2.456 | 34.013 | 2.875 | 2,595 | 3,075 | 2.576 | -65,625 | 1.793 | 1.777 | 2.461 | | (p) | • | SIP | | 1 hour | 147.619 | 16.734 | 9.865 | 6,663 | 11.467 | 169.324 | 71.846 | 14.826 | 11.932 | | 90,430 | 40.586 | 27,059 | 30,875 | 55.874 | | 50.419 | 34.125 | 63.056 | 102.396 | 20.985 | 222,794 | 33,772 | 26.294 | 21,807 | 18.907 | 153,552 | 21.515 | 26, 753 | 19.642 | | NH3-N (16s/d) | | | upstream | load | 3,487 | 0.285 | 0.672 | 0,167 | 0.473 | 1.965 | 909.0 | 1,148 | 0.527 | | 1.222 | 1.313 | 1.002 | 0.511 | 1,492 | | 0.393 | 1.094 | 2.569 | 0.873 | 1.340 | 10,270 | 2,087 | 2.242 | 0.642 | 0.512 | 116,639 | 1.000 | 1,024 | 0.286 | | onized | | acceptable
nstream load | | 4 days | 19,292 | 2.960 | 1.760 | 1.049 | 2.048 | 21.870 | 11.722 | 2.732 | 2,142 | | 17.305 | 7.547 | 5.025 | 4,365 | 10.579 | | 9.289 | 5.988 | 12,206 | 16.851 | 3.796 | 44,283 | 4.962 | 4.837 | 3,718 | 3,088 | 51.014 | 2.791 | 4.800 | 2.747 | | # # # # # # # # # # # # # # # # # # # | Bax i sus | , and | : | 1 hour | 151,106 | 17,018 | 10,537 | 6.830 | 11.940 | 171,288 | 72,452 | 15.974 | 12,459 | | 91.653 | 41.899 | 28.061 | 31.386 | 57.366 | | 50,812 | 35,219 | 65,626 | 103,270 | 22,324 | 233,064 | 35,859 | 28.535 | 22,450 | 19.419 | 270.191 | 22,515 | 29.777 | 19.929 | | | | unionized | X-2HX | (#å/F) | 0,005 | 0.017 | 0.010 | 0.010 | 0.009 | 0,005 | 0.012 | 0.013 | 0.010 | | 0.012 | 0.019 | 0.014 | 0.007 | 0.017 | | 0.018 | 0.030 | 0.016 | 0.011 | 0.019 | 0.020 | 0.041 | 0.025 | 0.023 | 0.024 | 0.036 | 0.041 | 0.035 | 0.041 | | 4 day | *************************************** | | | Е | 3,589 | 3,105 | 3,873 | 3.664 | 3,639 | 3,192 | 2,307 | 3,192 | 3.565 | | 2.818 | 2,123 | 2,780 | 2,999 | 2.275 | | 2,138 | 1,384 | 2,489 | 2,388 | 2,183 | 2.023 | 1,000 | 1.667 | 1.811 | 1.679 | 1,148 | 1.000 | 1.172 | 1.000 | | | H
H
H
H
H | | | Ratio | 23,943 | 16.000 | 16.000 | 16.000 | 16.000 | 23,943 | 18.525 | 16.000 | 16.000 | | 16.000 | 16,000 | 16.000 | 21.199 | 16,000 | | 16.000 | 16.000 | 16.000 | 18,525 | 16,000 | 16,000 | 16.000 | 16.000 | 16.000 | 16.000 | 16.000 | 16.000 | 16.000 | 16.000 | | | | ufinizeria
ufinized | X-23-X | (mg/L) | 0.037 | 0.062 | 0.052 | 0.052 | 0.049 | 0.042 | 0.071 | 0.067 | 0.050 | | 0.063 | 0.101 | 0.073 | 0.020 | 0.089 | | 0.095 | 0.154 | 0.082 | 0.069 | 0.098 | 0.106 | 0.244 | 0.128 | 0.118 | 0.127 | 0.186 | 0.239 | 0,182 | 0.214 | | 1 hour | | | | FPH | 1.600 | 1.118 | 1,053 | 1.138 | 1.201 | 1.600 | 1,305 | 1,001 | 1.201 | | 1.201 | 1,001 | 1.053 | 1.435 | 1.053 | | 1.053 | 1.000 | 1.053 | 1.305 | 1.000 | 1,000 | 1.000 | 1.000 | 1.000 | 1,000 | 1.000 | 1.000 | 1.000 | 1,000 | | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | u no | | Н | 3,589 | 3,105 | 3.873 | 3.664 | 3,639 | 3,192 | 2,307 | 3,192 | 3,565 | | 2.818 | 2,123 | 2.780 | 2.999 | 2.275 | | 2.138 | 1,384 | 2,489 | 2,388 | 2,183 | 2,023 | 0.877 | 1.667 | 1.811 | 1.679 | 1.148 | 0.895 | 1,172 | 1.000 | | | | 1 2 | NH3-X | ((mg/L) | 0.001 | 0,001 | 0.004 | 0,002 | 0.002 | 0.000 | 0.001 | 0.006 | 0.003 | | 0.001 | 0.004 | 0.003 | 0.001 | 0.003 | | 0.001 | 0.006 | 0,003 | 0.001 | 0.008 | 0,005 | 0.022 | 0.013 | 0.002 | 0.005 | 0.083 | 0.023 | 0.027 | 0.007 | | j | Sh Palouse agoing data | 1 | 7 843 | unionized | 0.235 | 0.699 | 0.675 | 0.574 | 0.460 | 0.270 | 0.625 | 1.068 | 0,472 | | 0.623 | 1.706 | 666.0 | 0,366 | 1,258 | | 1,350 | 30,747 | 1.135 | 0.600 | 2,597 | 6.805 | 15,365 | 18,568 | 7.641 | 12.493 | 52,019 | 15,085 | 29,682 | 16.603 | | - | Sh Palouse ambient data | f
7
9
8
8
8
8
8
8
8 | NH3-N | (7/6w) | 0.37 | 0.18 | 99.0 | 0.36 | 0.53 | 0.18 | 0.10 | 0.57 | 0.56 | | 0.14 | 0.21 | 0.30 | 0.24 | 0.20 | | 0.06 | 0.02 | 0.30 | 0.10 | 0.29 | 0.07 | 0.14 | 0.07 | 0.06 | 0.04 | 0.16 | 0.15 | 0.04 | 0.04 | | 4 | St Palous | * * * * * * * * * * * * * * * * * * * | F. | (20) | 7.4 | .00 | 7,9 | 7.8 | 7.7 | 7.4 | 7.6 | 9.0 | 7.7 | , | 7.7 | 8.0 | 6.7 | 7.5 | 6 | | 7.9 | 4.2 | 7. 9 | 7.6 | 8.2 | 8.6 | 9.6 | 9.0 | 8.6 | 8,8 | 6,5 | 8.6 | 0- | 8.7 | | | | :
:
:
:
:
:
: | temp | (0) | 5. | 3,6 | 4.0 | 1.2 | 1.3 | 3.2 | 7.9 | 3.2 | 1.6 | : | 0 0 | ٠. | 5.5 | 1,4 | 8.1 | | 0.0 | 15.3 | 8.9 | 7.4 | 69.7 | 9.8 | 21.9 | 12.6 | 11.4 | 12.5 | 18.0 | 21.6 | 17.7 | 70.0 | | | 6
6
6
6
6
6
6
6
6 | | 410# | (cfs) | 744.0 | 42.0 | 28.0 | 15.0 | 36.0 | 750.0 | 180.0 | 35.0 | 37.0 | ; | 260,0 | 63.0 | 62.0 | 108.0 | 110.0 | | 90.0 | 33.0 | 140.0 | 270.0 | 33,0 | 400.0 | 18.0 | 32.0 | 26.0 | 19.0 | 266.0 | 2.8 | 21.0 | 8.0 | | | | | , | t t | 1440 | 1125 | 1115 | 1130 | 1150 | 1555 | 1150 | 1045 | 1155 | ; | 1545 | 1800 | 1120 | 1205 | 1150 | | 1430 | 1235 | 1110 | 1120 | 1155 | 1415 | 1225 | 1105 | 1145 | 1150 | 1620 | 1215 | 1120 | 1205 | | | | | | λeρ | 26 | 22 | 17 | 12 | 4 | 5 | 22 | 1 | 11 | | 13 | 22 | 9 | 12 | Ξ | | <u>o-</u> | 6 | 01 | 2 | 13 | 10 | 24 | œ | - | 12 | 9 | 28 | 12 | 10 | | | | date | | worth | | | • | | | 2 | 2 | 7 | 2 | , | ~ | 24 | 64 | P7 | * > | | 4 | ≪4 | ** | • | W.T | кo | sc. | m | iO. | S | 9 | 9 | 9 | 40 | | | | | | year | 1982 | 1983 | 1984 | 1985 | 9851 | 1982 | 1983 | 1984 | 1986 | | 7841 | 1983 | 1984 | 1985 | 1986 | | 1882 | 1983 | 1861 | 1985 | 9841 | 1982 | 1983 | 1984 | 1882 | 1986 | 1982 | 1983 | 1984 | 1986 | Table 1b (cont d) - Calculation of acceptable NH3-N discharge concentrations SIP inspection conditions - Pullman 9/86. | | | MPDES | HH3-M | (Mg/L) | 1.00 | 1.00 | 00.1 | 1.00 | 1.00 | 00. | 06.1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1,00 | 1.00 | 3.8 | 5.00 | 5.00 | 2.00 | 5.00 | | | | | | |---|---|---|--------------------|---|--------|--------|--------|--------|--------|--------|--------------|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--------|--------|---| | _ | | | 38E | 4 day | 1.443 | 0.455 | 0.112 | 0.861 | 0.148 | 2.291 | 0.412 | 0.474 | 1,563 | 1.024 | 0.621 | 0.598 | 2.190 | 3,703 | 2,291 | 3.986 | 0.959 | 4.841 | 1.022 | 3,022 | 4.379 | 0.574 | 4.804 | 7.454 | 9.074 | 12,853 | 0.746 | | ine [23e 8] | 7/00) 500 | | NH-CHN | 1 hour | 5.725 | 2.256 | 0.641 | 3,571 | 0.941 | 8,981 | 1.797 | 2.164 | 6.395 | 3.694 | 2,393 | 2,843 | 8.640 | 19,714 | 8.479 | 14.465 | 3.830 | 32,038 | 7,435 | 10.572 | 15,240 | 4.456 | 17,360 | 23.579 | 30,970 | 42.128 | 9,541 | | from 12 to 6 15 of 12 conf | concentrations (mg/L) | | NH3-N | 4 day | 0.088 | 0.071 | 0.065 | 0.072 | 0.053 | 0.075 | 0.062 | 0.049 | 0.070 | 0,071 | 0,062 | 0.043 | 0.063 | 0.020 | 0.043 | 0.045 | 0.058 | 0.011 | 0.020 | 0.052 | 0.070 | 0.013 | 0.063 | 0.059 | 0.081 | 660.0 | 0.008 | | 7 | ; 0 | | unionized NH3-N | 1 hour | 0,351 | 0.353 | 0.373 | 0.299 | 0.339 | 0,296 | 0.270 | 0.225 | 0.286 | 0.256 | 0.238 | 0,205 | 0.248 | 0.105 | 0.138 | 0.163 | 0.231 | 0.071 | 0.144 | 0.182 | 0.242 | 0.098 | 0.227 | 0.188 | 0.209 | 0.324 | 0.104 | | | | | INCE | 4 day | 2,102 | 1.692 | 1.551 | 1.714 | 1.267 | 1,782 | 1,472 | 1,168 | 1.662 | 1.684 | 1,471 | 1.027 | 1.493 | 0.469 | 1.012 | 1.067 | 1.377 | 0.254 | 0.472 | 1.238 | 1.656 | 0,301 | 1.491 | 1,410 | 1,456 | 2,352 | 0.194 | | (þ/ | | STP | allowance | 1 hour | 17,557 | 17.667 | 18.662 | 14.959 | 16.944 | 14.790 | 13,523 | 11.239 | 14,311 | 12,794 | 11.934 | 10.275 | 12,399 | 5.258 | 7.887 | B.150 | 11.569 | 3,543 | 7.229 | 9,115 | 12.133 | 4.926 | 11.345 | 9.392 | 10,461 | 16.232 | 5.214 | | unionized NH3-N (lbs/d) | | | and Train | load | 0.091 | 0.169 | 0.753 | 0.203 | 0.682 | 0,142 | 0.195 | 0,224 | 0.087 | 0.133 | 0.026 | 0,311 | 0.085 | 0.036 | 0.066 | 0.034 | 0.156 | 0.006 | 0,460 | 0,208 | 0.244 | 0.438 | 0.355 | 0.112 | 0.359 | 0.584 | 0.547 | | unionized | 6 D 6 | table | ar load | skep y | 2.193 | 1.861 | 2,304 | 1.917 | 1.949 | 1,933 | 1.666 | 1.392 | 1.749 | 1.817 | 1,527 | 1.338 | 1.578 | 0,505 | 1,078 | 1.101 | 1,533 | 0.260 | 1,132 | 1.446 | 1,900 | 0,739 | 1.846 | 1.522 | 1.814 | 2.937 | 0.841 | | *************************************** | # D # 1 X 19 ## | acceptable | downstream load | 1 hour | 17.648 | 17.836 | 19.414 | 15.162 | 17.626 | 14,932 | 13,718 | 11.463 | 14.397 | 12.927 | 11.990 | 10,587 | 12.484 | 5.294 | 7.953 | 8.184 | 11.725 | 3,549 | 7.888 | 9,323 | 12,377 | 5.364 | 11,700 | 9.503 | 10.820 | 16.817 | 5.861 | | | *************************************** | Criteria | unionized
NH3-N | (#d/L) | 0.041 | 0.041 | 0.041 | 0.038 | 0.041 | 0.026 | 0.037 | 0.031 | 0,039 | 0.025 | 0.030 | 0.026 | 0.031 | 0.010 | 0,017 | 0.018 | 0.027 | 0.004 | 0.015 | 0.013 | 0.018 | 0.011 | 0.015 | 0.012 | 0.010 | 0.011 | 0.011 | | A day | ************ | | | Ε | 1,000 | 1.000 | 1,000 | 1.086 | 1.000 | | 1.117 | 1.337 | 1.084 | 1.622 | 1.393 | 1,556 | 1.318 | 2,168 | 2,404 | 2.051 | 1.503 | 2.559 | 2.818 | 3,126 | 2,259 | 3,715 | 2.485 | 3,373 | 3.873 | 3,467 | 3,793 | | |
000000000000000000000000000000000000000 | | | Ratio | 16.000 | 16.000 | 16.000 | 16.000 | 16,000 | 16,000 | 16.000 | 16,000 | 16.000 | 16,000 | 16.000 | 16.000 | 16,000 | 21,199 | 16,000 | 16,000 | 16.000 | 29,361 | 16,000 | 16,000 | 16.000 | 16.000 | 16.000 | 16.000 | 16.000 | 16,000 | 16.000 | | | | Criteria | unionized
MH3-N | (#d/f) | 0.221 | 0.249 | 0.235 | 0.197 | 0.239 | 0,185 | 0,191 | 0.160 | 0,201 | 0.132 | 0.153 | 0.137 | 0.162 | 0.069 | 0.089 | 0,093 | 0.142 | 0.040 | 0.076 | 0.068 | 0,095 | 0.058 | 0.080 | 090.0 | 0.052 | 0.059 | 0.056 | | 1 haur | | | | Hd3 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.001 | 1,000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.001 | 1.435 | 1.000 | 1.118 | 1.000 | 2.068 | 000.1 | 1.000 | 1.001 | 1,000 | 1.001 | 1.053 | 1,053 | 1.053 | 1,000 | | 1 | *************************************** | | | Е | 0.966 | 0.859 | 0.408 | 1,086 | 0.895 | 1,156 | 1.117 | 1.337 | 1.064 | 1.622 | 1,393 | 1.556 | 1.318 | 2.168 | 2.404 | 2.051 | 1.503 | 2.559 | 2.818 | 3.126 | 2,259 | 3,715 | 2,685 | 3,373 | 3,873 | 3,467 | 3,793 | | | | *************************************** | unionized
NH3-N | ((mg/L) | 0.003 | 0.008 | 0.023 | 0.008 | 0.029 | 0,005 | 0.004 | 0.010 | 0.004 | 0.003 | 0.002 | 0.012 | 0.003 | 0.001 | 0.002 | 0.001 | 0.005 | 0.000 | 0.012 | 0.002 | 0.003 | 0.010 | 0.004 | 0.001 | 0.002 | 0.002 | 0.012 | | | fata | *************************************** | NH3 | unionize | 6.129 | 15,649 | 58,174 | 8,372 | 35,971 | 3,291 | 15,038 | 10.379 | 4.472 | 6.921 | 9.965 | 7,223 | 2.868 | 0,533 | 1.859 | 1,126 | 6.037 | 0.221 | 1.943 | 1.723 | 1.59 | 2.209 | 1.306 | 0.796 | 0.675 | 0.770 | 1.092 | | | SF Palouse ambient data | 化甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基 | NH3-N | (#d/F) | 0.05 | 0.02 | 0.04 | 0.09 | 0,08 | 0.14 | 0.06 | 0.10 | 0.09 | 0.04 | 0.05 | 0.16 | 0.11 | 0.25 | 0.09 | 0.08 | 0.08 | 0.07 | 0.63 | 9.14 | 0.19 | 0.46 | 0.28 | 0.13 | 0.34 | 0.32 | 1.10 | | | SF Palous | ********** | H | (RS) | 8.2 | 8,6 | 5,51 | 8.8 | 9.1 | 8,0 | 8.7 | 8.6 | 8,1 | 8,5 | 8,6 | 8.5 | 8.0 | 7.5 | 8.1 | 7.8 | Ð. Þ | 7.2 | 8.2 | 8,2 | 9.0 | 4 . | 8.9 | 1.9 | 7.9 | 7.9 | 9.1 | | | | *************************************** | 4 | 9 | 20.5 | 22.2 | 21,4 | 18.8 | 21.6 | 17.9 | 18.4 | 15,8 | 19.1 | 13.0 | 15.2 | 13.6 | 16.0 | 8 | 7,3 | 9.6 | 14.1 | 4.9 | 5.0 | 3.5 | 8.2 | 1.0 | 5.7 | 2.4 | 0.4 | 2.0 | 0.7 | | | | ## ## ## ## ## ## ## ## ## ## ## ## ## | f) 08 | (££3) | 5.5 | 0,4 | 6.0 | 5.0 | | 5,7 | 4 .0 | 0 . | 4.0 | 8.0 | 5.2 | 5,0 | 5.0 | 5,0 | 7.3 | 7.0 | 6.9 | 7.0 | 10.0 | 16.0 | 12.0 | 8,0 | 18.0 | 20.0 | 29.0 | 44.0 | 0.01 | | | | | • | ======================================= | 1130 | 1220 | 1210 | 1210 | 1310 | 1240 | 1125 | 1155 | 1145 | 1135 | 1235 | 1210 | 1220 | 610 | 1115 | 1210 | 1120 | 800 | 1125 | 1215 | 1140 | 1205 | 0091 | 1055 | 1220 | 1200 | 1200 | | | | | | day. | = | 19 | 10 | 8 | 11 | 23 | * | 13 | 12 | * | 27 | Ξ | ō- | 20 | 16 | 22 | 6 | = | 91 | 54 | 13 | 3.6 | ω | 28 | 92 | == | 0 | | | | | date | sonth | 7 | 7 | r~ | 7 | 80 | œ | 89 | æ | œ | b | 6 | ō. | 6 | 10 | 10 | 10 | 0 | = | Ξ | | | Ξ | 13 | 12 | 12 | 22 | 13 | | | | | | year | 1982 | 1983 | 1984 | 1986 | 1982 | 1983 | 1984 | 1985 | 1986 | 1982 | 1983 | 1984 | 1986 | 1981 | 1982 | 1983 | 1984 | 1861 | 1982 | 1983 | 1984 | 1985 | 1861 | 1982 | 1983 | 1984 | 00
00
10
10
10
10
10
10
10
10
10
10
10
1 | APPENDIX II ## LABORATORY PROCEDURAL SURVEY | Disc | harge | er: | City of Pullman | |------|--------------|-----------------|--| | | | | umber: Wa-00-4465-2 | | Date | : · <u>·</u> | 9-1 | 6-86 | | Indu | ıstria | a 1/M un | nicipal Representatives Present: alprouty, Terry Daksen. | | | ncy Re | | entatives Present: <u>[ar] N., [arry P., Mark H.</u> | | I. | COMF | POSITE | SAMPLES | | | A. | Co11 | ection and Handling | | | | 1. | Are samples collected via automatic or manual compositing method? <u>Quality Control Equip.</u> co | | | | | a. If automatic, are samples portable 2 or permanently installed $\times 2$? | | | | | Comments/problems Microprocessor drifts | | | | | Be-program occassionally. | | | | | | | | | 2. | What is the frequency of collecting composite samples? | | | | | proportional to flow. Eff 45 min. | | | | | approx. 1/hr | | | | 3. | Are composites collected at a location where homogeneous conditions exist? | | | | | a. Influent? <u>Kes</u> | | | | | b. Final Effluent? <u>Xes</u> | | | | | c. Other (specify)? | | | | 4. | What is the time span for compositing period? | | | | | Sample aliquot? 150 mls per 45 minutes | | | | 5. | Is composite sample flow or time proportional? | | | 6. | Is final effluent composite collected from a chlorinated or non-chlorinated source? <u>de-chlorinated</u> | |--|---------|---| | | 7. | Are composites refrigerated during collection? <u>Yes</u> | | | 8. | How long are samples held prior to analyses? | | | 9. | Under what condition are samples held prior to analyses? a. Refrigeration? b. Frozen? c. Other (specify)? | | | 10. | What is the approximate sample temperature at the time of analysis? | | | 11. | Are compositor bottles and sampling lines cleaned periodically? 165 | | | 12. | b. Method? bottles - phosphale - Alloward lines - bleach, sponge through line. Does compositor have a flushing cycle? Yes a. Before drawing sample? Yes b. After drawing sample? Yes | | | 13. | Is composite sample thoroughly mixed immediately prior to withdrawing sample? | | Recommen | ndation | ns: | | <i>45e</i> | a | Colcium Hypochlarite solution for cleaning bottles. | | Water and a Collection for the agency of the same | | | | жын нубектей көйбөлөгө жаруун айылдаг
жарысаат (н 18 Мас Маринун казары ста | | | | No and designation of the last | | | # II. BIOCHEMICAL OXYGEN DEMAND CHECKLIST | A. | Tech | nique |
--|------|---| | | 1. | What analysis technique is utilized in determining BOD ₅ ? | | | | a. Standard Methods? K Edition? | | | | b. EPA? | | | | c. A.S.T.M.? | | | | d. Other (specify)? | | В. | Seed | Material | | | ١. | Is seed material used in determining BOD? 15 | | | 2. | Where is seed material obtained? <u>Sec. eFF</u> | | | | | | | 3. | How long is a batch of seed kept? 24 hours | | | • | and under what conditions? (temperature, dark) | | | | and under what conditions: (cemperature, dark) | | | 4 | Now is good material averaged for use in the DOD to the | | | 4. | How is seed material prepared for use in the BOD test? | | | | GINECITY 10 20/1/83 | | Recommend | | • | | Colle | cT | seed material the day before analysis. | | | ct | seed From primary. | | | · | | | | | | | divide the sign and the commence of the sign and | | | | | | | | | | | | | | Reagent water utilized in preparing diultion water is: | |-------------------|-------|---| | | | a. Distilled? X | | | | b. Deionized? | | | | c. Tap, chlorinated non-chlorinated | | | | d. Other (specify)? | | | 2. | Is reagent water aged prior to use? 2 days | | | | How long?, under what conditions? | | | | in the Incupator (dark) | | meno | datio | ns: | ngan ngan ngan ng | | | | | | | | D. | Dil | | | D. | | ution Water Are the four (4) nutrient buffers added to the reagent water? | | D. | | ution Water Are the four (4) nutrient buffers added to the reagent water? | | D. | | Are the four (4) nutrient buffers added to the reagent water? a | | D. | 1. | Are the four (4) nutrient buffers added to the reagent water? a mls of each nutrient buffer per | | D. | 2. | Are the four (4) nutrient buffers added to the reagent water? Are the four (4) nutrient buffers added to the reagent water? a | Reagent Water C. | an. | d n. | s:
hosphate buffer on day of analysis | |-----|----------|---| | | T | esperante de la company de de la company | | | | | | | | | | | | | | | | | | E. | Test | Procedure | | | 1. | How often are BOD's being set up? 1/4 days | | | | What is maximum holding time of sample subsequent to end | | | | composite period? 2-4 hours | | | 2. | If sample to be tested has been previously frozen, is it | | | | reseeded? | | | | | | | 2 | Does cample to be tested centain meridual chlomine? | | | 3. | Does sample to be tested contain residual chlorine? If yes, is sample | | | | a. Dechlorinated? | | | | How? | | | | b. Reseeded? Yes | | | | How? <u>sec. effluen</u> T | | | | | | | 4. | Is pH of sample between 6.5 and 8.6? Yes approx. 6.5 | | | | If no, is sample pH adjusted and sample reseeded? | | | | | | | 5. | How is pH measured? Orion mode no. 30/ | | | | a. Frequency of calibration? darly | | | | b. Buffers used? 4, 7, 9 | | /. | Is the five (5) day DU depletion of the dilution water (blank) determined? $\sqrt{e_5}$, normal range? o_2 o_3 | |-----|---| | 8. | What is the range of initial (zero day) DO in dilution water blank? <u>6.8-7.6 mg/L</u> | | 9. | How much seed is used in preparing the seeded dilution water? | | 10. | Is five (5) day DO depletion of seeded blank determined? Ves If yes, is five (5) day DO depletion of seeded blank approximately 0.5 mg/l greater than that of the dilution water blank? | | 11. | Is BOD of seed determined? US | | 12. | Does BOD calculation account for five (5) day DO depletion of | | | a. Seeded dilution water? <u>Ves</u> | | | How? seed Correction Factor in std. methods | | | b. Dilution water blank? no 0.1-0.2 depletion | | | How? | | 13. | In calculating the five (5) day DO depletion of the sample dilution, is the initial (zero day) DO obtained from | | | a. Sample dilution? | | | b. Dilution water blank? | | 14. | How is the BOD5 calculated for a given sample dilution which has resulted in a five (5) day DO depletion of less than 2.0 ppm or has a residual (final) DO of less than 1.0 ppm? | | | | | 15. | Is liter dilution method or bottle dilution method utilized in preparation of | | | a. Seeded dilution water? bottle liter | | | b. Sample dilutions? | | 16. | Are samples and controls incubated for five (5) days at 20°C ± 1°C and in the dark? <u>Ves</u> | | 17. | How is incubator temperature regulated? | |----------------|---| | | temp controlled Thermostat | | 3.0 | , | | 18. | Is the incubator temperature gage checked for accuracy? | | | a. If yes, how? Thermoneter in Flack of 1/20 | | | b. Frequency? welly | | 19. | Is a log of recorded incubator temperatures maintained? 455 | | | a. If yes, how often is the incubator temperature monitored/checked? Weekly | | 20. | By what method are dissolved oxygen concentrations determined? | | | Probe \(\times \) Winkler \(\frac{\frac{a}{b}raled}{\times} \) Other \(\times \times \times \) | | | a. If by probe: | | | 1. What method of calibration is in use? <u>heck with</u> | | | Winkler and our Calibration every 4 days | | | 2. What is the frequency of calibration? Weekly with winks | | | b. If by Winkler: | | | 1. Is sodium thiosulfate or PAO used as titrant? Thio. | | | 2. How is standardization of titrant accomplished? | | | Ri-10date | | | 3. What is the frequency of standardization? | | | 4-5 Weeks | | Dogowendstion | | | Recommendation | | | | ete pt meter every 2 hours. Buffet | | | delation water to raise DO To 8.0- 9.0 mg/l | | | super saturation at This Elev. 2300 FT. | | - 3Tandard | rze thio every 2 weeks. | | | e 14th Ed. of
Standard Methods. | | / | 33 | - F. Calculating Final Biochemical Oxygen Demand Values Washington State Department of Ecology - 1. Correction Factors - a. Dilution factor: - b. Seed correction: - = (BOD of Seed)(ml of seed in l liter dilution water) 1000 - c. F factor ~ a minor correction for the amount of seed in the seeded reagent Versus the amount of seed in the sample dilution: - 2. Final BOD Calculations - a. For seed reagent: (seed reagent depletion-dilution water blank depletion) x D.F. b. For seeded sample: (sample dilution depletion-dilution water blank depletion-scf) x D.F. c. For unseeded sample: (sample dilution depletion-dilution water blank depletion) x D.F. 3. Industry/Municipality Final Calculations | Reco | nmend | ation | | |------------------|--|--|---| | | and the second state of the second second | | | | the water to the | ************************************** | | | | 4 | | | | | | | The second secon | | | | | ales a d'Oly d'Ay Juya chagailteann ar gaid | | | - | and the same of th | and the constitution of th | | | | | | | | III. | TOTA | L SUS | PENDED SOLIDS CHECKLIST | | | A. | Tech | nique | | | | What analysis technique is utilized in determining total suspended solids? | | | | | | a. Standard Methods? Edition | | | | | b. EPA? | | | | | c. A.S.T.M.? | | | | | d. Other (specify)? | | | В. | Test | Procedure | | | | 1. | What type of filter paper is utilized: | | | | | a. Reeve Angel 934 AH? | | | | | b. Gelman A/E? | | | | | c. Other (specify)? | | | | | d. Size? | | | | 2. | What type of filtering apparatus is used? ——————————————————————————————————— | | | | | - 170001) [FULL DIE ; WHO MEN NO. 1 KOUTTHE MISS ETC | | | | 3. | Are filter papers prewashed prior to analysis? Ves | | | | | a. If yes, are filters then dried for a minimum of one hour yes at 103°C-105°C yes? | | | | | b. Are filters allowed to cool in a dessicator prior to weighing? Ves | | 4. | How are filters stored prior to use? In dess icator | | | | | | | |-----|---|--|--|--|--|--|--| | 5. | What is the average and minimum volume filtered? | | | | | | | | 6. | How is sample volume selected? | | | | | | | | | a. Ease of filtration? X | | | | | | | | | b. Ease of calculation? | | | | | | | | | c. Grams per unit surface area? | | | | | | | | | d. Other (specify)? | | | | | | | | 7. | What is the average filtering time (assume sample is from final effluent)? | | | | | | | | 8. | How does analyst proceed with the test when the filter clogs at partial filtration? | | | | | | | | 9. | If less than 50 milliliters can be filtered at a time, are duplicate or triplicate sampe volumes filtered? yes | | | | | | | | 10. | Is sample measuring container; i.e., graduated cylinder, rinsed following sample filtration and the resulting washwater filtered with the sample? | | | | | | | | 11. | Is filter funnel washed down following sample filtration? | | | | | | | | | when using millipore | | | | | | | | 12. | Following filtration, is filter dryed for one (1) hour, cooled in a desscator, and then reweighed? | | | | | | | | 13. | Subsequent to initial reweighing of the filter, is the drying cycle repeated until a constant filter weight is obtained or until weight loss is less than 0.5 mg? | | | | | | | | 14. Is a filter aid such as cellite used? No | |--| | a. If yes, explain: | | Recommendations: | | wit | | wt | | · | | | | | | | | | | | - C. Calculating Total Suspended Solids Values Washington State Department of Ecology - A. mg/1 TSS = $\frac{A-B}{C} \times 10^6$ - 1. Where: A = final weight of filter and residue (grams) B = initial weight of filter (grams) C = Milliliters of sample filtered 2. Industry/Municipality Calculations | Recommendations: | | | | | | |---------------------|--
--|--|--|--| | | | | | | en e | rediction and an experience of the contraction of the contraction of the contraction of the contraction of the | | Million Market and Commission African Company of the th | | | | | | | | | | | SPLIT SAMPLE RESULT | rs: | | | | | | Origin of Samp | ole | | | | | | Collection Da | te | aller was not never and the best statements when the second second second second second second second second se | | | | | В | 00 | | TSS | EPA BO | D_Standard | | DOE · | IND./MUN. | DOE | IND./MUN. | DOE | IND./MUN | | | | dia no constitui de la constit | | and the same of th | *************************************** |